侵權(quán)投訴
訂閱
糾錯
加入自媒體

滴滴AI Lab成立2年,掌門人葉杰平將離職

今日,中國人工智能行業(yè)又有重磅人事變動:滴滴出行副總裁、AI Labs 負(fù)責(zé)人葉杰平將于近期離職。

對此,滴滴官方回應(yīng)稱:滴滴 AI Labs 負(fù)責(zé)人葉杰平因個人原因?qū)⒂诮陔x職。葉杰平內(nèi)部告別信表示,希望嘗試去探索 AI 在其他領(lǐng)域的可能性。葉杰平離職后,CTO 張博將兼任 AI Labs 負(fù)責(zé)人,滴滴智能控制首席科學(xué)家唐劍將任 AI Labs 副主任。
葉杰平于 2015 年加入滴滴。這個時間點,也正是全球范圍內(nèi),各大互聯(lián)網(wǎng)公司用高薪、獎金和股票套餐來吸引人工智能專家離開學(xué)術(shù)界的“運動”高潮——2015 年,單單 Uber 從卡內(nèi)基梅隆大學(xué)的機器人實驗室就雇傭了 40 人,其中就包括教授級別人員。

而具體到滴滴,這家發(fā)展勢頭迅猛的出行公司自然也不會缺席這股浪潮:在已經(jīng)擁有主打搭建滴滴交通大腦的滴滴研究院、以及主打大數(shù)據(jù)安全和智能駕駛的美國研究院之后,滴滴于 2018 年創(chuàng)辦 AI Labs,葉杰平被任命為該團隊的負(fù)責(zé)人。

公開信息顯示,葉杰平畢業(yè)于上海復(fù)旦大學(xué)數(shù)學(xué)系,后獲美國明尼蘇達大學(xué)博士,是美國密歇根大學(xué)終身教授以及密歇根大學(xué)大數(shù)據(jù)研究中心管理委員會成員,專業(yè)方向包括機器學(xué)習(xí)、數(shù)據(jù)挖掘以及大數(shù)據(jù)分析。其學(xué)術(shù)成就在業(yè)內(nèi)處于領(lǐng)先地位,在機器學(xué)習(xí)和數(shù)據(jù)挖掘國際頂級會議及期刊上共發(fā)表論文 200 余篇。曾獲 KDD 和 ICML 最佳論文獎以及美國國家自然科學(xué)基金會生涯獎 (NSF CAREER Award),并擔(dān)任多個機器學(xué)習(xí)和數(shù)據(jù)挖掘領(lǐng)域頂級會議的主席,F(xiàn)任職機器學(xué)習(xí)和數(shù)據(jù)挖掘期刊 IEEE TPAMI,DMKD,和 IEEE TKDE 的副編委。

當(dāng)時,滴滴 AI Labs 的建立,被認(rèn)為是滴滴繼研究院(主打搭建滴滴交通大腦)及美國研究院(主打大數(shù)據(jù)安全和智能駕駛)之后,在科研網(wǎng)絡(luò)上進一步拓展,帶來三足鼎立的局勢:它將主要探索 AI 領(lǐng)域技術(shù)難題,重點發(fā)力機器學(xué)習(xí)、自然語言處理、計算器視覺、運籌學(xué)、統(tǒng)計學(xué)等領(lǐng)域的前沿技術(shù)研究及應(yīng)用,為下一代技術(shù)做好準(zhǔn)備,期望能用技術(shù)構(gòu)建智能出行新生態(tài)。

從這段介紹也不難看出,滴滴 AI Labs 算是三大 AI 團隊中離業(yè)務(wù)線最遠、負(fù)責(zé)布局前沿技術(shù)的角色。

也正因如此,在機器學(xué)習(xí)研究領(lǐng)域頗有建樹的葉杰平,成為滴滴 AI Labs 的掌舵人。

作為滴滴 AI Labs 的一把手,葉杰平曾在多個行業(yè)場合發(fā)布演講,介紹滴滴在“AI+ 出行”領(lǐng)域的技術(shù)探索和布局。

例如三層結(jié)構(gòu)來布局人工智能:“最底層是基礎(chǔ)的算法,包括強化學(xué)習(xí)、深度學(xué)習(xí)、統(tǒng)計、運籌等基礎(chǔ)前沿算法;中間層是核心 AI 技術(shù),橫跨語音識別、NLP、CV、知識圖譜等多個領(lǐng)域;頂層是應(yīng)用,包括交通基礎(chǔ)設(shè)施智能化,交通工具的電動化和自動化,以及如何用AI技術(shù)提升出行的安全、體驗、效率”。

以及更具體的目前“滴滴出行”的各大模塊:路徑規(guī)劃、ETA(estimated time of arrival)、智能訂單分配、交通容量管理、供需均衡、拼車、安全評估等。

但滴滴最為行業(yè)稱道的,還是它的訂單匹配技術(shù),在某個時刻乘客和空閑車輛的匹配量可能就達到了千萬級。由于路面情況不同,同樣一公里可能因為交通擁堵情況而導(dǎo)致行駛時間不同,因此在距離評估以外,更困難的時間評估也被引入考量。

作為滴滴 AI Labs 的負(fù)責(zé)人,我們也能在滴滴 AI Labs 官網(wǎng)一窺葉杰平所帶領(lǐng)的這支團隊交出的“成績單”,主要有以下 6 項:

自然語言處理——以滴滴的智能客服系統(tǒng)與貼心出行助手為代表。

司乘體驗——基于出行大數(shù)據(jù)的人工智能方法提升用戶出行體驗和服務(wù)效率。

平臺效率——用統(tǒng)計學(xué)習(xí),增強學(xué)習(xí),和模擬系統(tǒng)來優(yōu)化交易和運營策略,并完善智能系統(tǒng)。

語音互動——專注于車載領(lǐng)域,高性能語音喚醒,識別,合成,對話理解技術(shù)。

計算機視覺——聚焦光學(xué)字符識別,人臉識別,質(zhì)檢,感知,理解,相互作用等技術(shù),提供出行服務(wù)標(biāo)準(zhǔn)質(zhì)檢,出行交通感知,智能交互等技術(shù)方案。

智能地圖引擎——針對滴滴海量實時出行數(shù)據(jù)和復(fù)雜的業(yè)務(wù)場景需求,開發(fā)全新的地圖服務(wù)系統(tǒng),如路徑規(guī)劃,時間預(yù)測(ETA),路況等。在這里,我們也對比了與滴滴的 AI Labs 有較大可比性的 Uber AI Lab 。

Uber AI Lab 比滴滴 AI Labs 早兩年成立,定位同樣是作為 Uber 的技術(shù)儲備小分隊,探索機器學(xué)習(xí)的前沿領(lǐng)域并將關(guān)鍵進展應(yīng)用到其業(yè)務(wù)中(從外賣派送路線規(guī)劃到 Uber 自動駕駛的所有任務(wù)),具體包括開發(fā)需要較少數(shù)據(jù)的機器學(xué)習(xí)形式;不僅使用數(shù)據(jù)而且使用明確的規(guī)則來訓(xùn)練 AI 系統(tǒng);和設(shè)計可以解釋其決策的機器學(xué)習(xí)系統(tǒng)等等。現(xiàn)在在 Uber AI Lab 的官網(wǎng)上,還能看到與之相關(guān)的學(xué)術(shù)論文研究。

圖片出處:Uber AI Lab

在研究領(lǐng)域方面,和滴滴 AI Labs 比較大的區(qū)別是,Uber AI Lab 的分工并沒有那么細致,不但有視覺、語音上的輸出,還承擔(dān)著大部分與自動駕駛直接相關(guān)的研究。

而在發(fā)展歷程上,成立更早的 Uber AI Lab 在初期便經(jīng)歷了大牛的流失:其負(fù)責(zé)人 Gary Marcus 在 2017 年宣布離職,離開 Uber AI Lab 后回歸學(xué)術(shù)界。

令人意外的是,今年 5 月,還未完成 Uber 自動駕駛愿景的 Uber AI Lab 劃上句號。Uber Uber CEO Dara Khosrowshahi 宣布關(guān)閉 Uber 的非核心業(yè)務(wù),其中就包括孵化器以及人工智能業(yè)務(wù)研究院 AI LAB,作為 Uber 的“戰(zhàn)略性選擇”。

有分析師稱,這意味著 Uber 從一家成長性公司向控制成本的公司轉(zhuǎn)型。而在 Reddit 上的相關(guān)討論中,更多的聲音表示:在 Uber 這樣的商業(yè)公司中,純粹的 AI 研究已死,疫情只是一個催化劑,但公司在短期內(nèi)但獲利能力以及公司的管理方式也是影響因素。另外,從時間節(jié)點上看,企業(yè)挖 AI 學(xué)術(shù)人才的大潮顯現(xiàn)出回落的趨勢,一些公司也會真正冷靜思考這些人才團隊對自己的真正價值所在。對于這一長期現(xiàn)象,我們后續(xù)仍將跟進解讀。

圖片出處:滴滴

目前滴滴首頁中 AI Lab 被歸到滴滴科技中,與其他產(chǎn)品和服務(wù)并列。

或許滴滴也遇到了類似的“戰(zhàn)略性選擇”時刻,報道顯示,滴滴內(nèi)部已經(jīng)將 AI Labs 更名  AI Tech,話術(shù)上似乎從實驗室變成了一個技術(shù)業(yè)務(wù)部門,更強調(diào)落地。

而葉杰平的下一步去向,目前信息也尚未可知,按照其在內(nèi)部告別信中的說法,他將“嘗試去探索 AI 在其他領(lǐng)域的可能性”。

附【告別信】原文:

感恩滴滴,感謝大家支持與幫助,相逢的人會再相逢。

五年前回國和大數(shù)據(jù)團隊的那次交流,讓我看到機器學(xué)習(xí)在交通領(lǐng)域無窮的潛力和想象力。何其有幸,在過去1975個日夜,和溫暖、靠譜、有同理心的你們一起,用AI提升出行效率,更守護每一次出行,這也讓我認(rèn)識到最好的研究是從落地中來的。加入滴滴,是一個非常正確的決定,這也是我職業(yè)里程中收獲最多的五年。

如今話別,內(nèi)心充滿不舍。我思考很久,嘗試去探索AI在其他領(lǐng)域的可能性。感恩滴滴,也感謝大家的信任、支持與幫助。AI Labs有唐老師,有朱老師,有Kevin,相信會持續(xù)帶領(lǐng)大家持續(xù)做出更多更新、更有力的探索。

不會走遠,相逢的人會再相逢。讓技術(shù)發(fā)揮更大價值,我們?nèi)匀蛔咴谕粭l路上

聲明: 本文由入駐維科號的作者撰寫,觀點僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

    文章糾錯
    x
    *文字標(biāo)題:
    *糾錯內(nèi)容:
    聯(lián)系郵箱:
    *驗 證 碼:

    粵公網(wǎng)安備 44030502002758號