訂閱
糾錯(cuò)
加入自媒體

使用Python+OpenCV+Dlib實(shí)現(xiàn)人臉檢測與人臉特征關(guān)鍵點(diǎn)識別

今天,我們將學(xué)習(xí)如何檢測圖像中的人臉并提取面部特征,如眼睛、鼻子、嘴巴等。我們可以將這些信息作為一個(gè)預(yù)處理步驟來完成,例如捕捉照片中人物的人臉(手動(dòng)或通過機(jī)器學(xué)習(xí)),創(chuàng)建效果來“增強(qiáng)”我們的圖像(類似于Snapchat等應(yīng)用程序中的效果),對人臉進(jìn)行情感分析等等。今天我們將通過引入DLib和從圖像中提取面部特征來將其提升到一個(gè)新的水平。相關(guān)閱讀:https://towardsdatascience.com/essential-opencv-functions-to-get-you-started-into-computer-vision-743df932e60Dlib是一個(gè)高級的機(jī)器學(xué)習(xí)庫,它是為解決復(fù)雜的現(xiàn)實(shí)世界問題而創(chuàng)建的。這個(gè)庫是用C++編程語言創(chuàng)建的,它與C/C++、Python和java一起工作。Dlib:http://dlib.net/值得注意的是,本教程可能需要對OpenCV庫有一定的了解,例如如何處理圖像、打開相機(jī)、圖像處理和一些小技巧。它是如何工作的?我們的臉有幾個(gè)可以識別的特征,比如眼睛、嘴巴、鼻子等等。當(dāng)我們使用DLib算法檢測這些特征時(shí),我們實(shí)際上得到了每個(gè)特征點(diǎn)的映射。該映射由67個(gè)點(diǎn)(稱為地標(biāo)點(diǎn))組成,可識別以下特征:

顎點(diǎn)= 0–16右眉點(diǎn)= 17–21左眉點(diǎn)= 22–26鼻點(diǎn)= 27–35右眼點(diǎn)= 36–41左眼點(diǎn)= 42–47口角= 48–60嘴唇分?jǐn)?shù)= 61–67現(xiàn)在讓我們來了解如何提取特征。安裝要求與往常一樣,本文將用代碼演示示例,并將逐步指導(dǎo)你實(shí)現(xiàn)一個(gè)完整的人臉特征識別示例。但是在開始之前,你需要啟動(dòng)一個(gè)新的Python項(xiàng)目并安裝3個(gè)不同的庫:opencv pythondlib如果像我一樣使用pipenv,可以使用以下命令安裝所有這些文件:pipenv install opencv-python, dlib如果你使用的是Mac和某些版本的Linux,則在安裝dlib時(shí)可能會遇到一些問題,如果遇到的是編譯錯(cuò)誤,請檢查使用的CMake庫版本。在Mac中,確保你有可用的CMake,并且使用正確的版本運(yùn)行:brew install cmake對于其他操作系統(tǒng),請?jiān)诰檢查以獲得特定支持。步驟1:載入并顯示圖片我們將從小處著手并以代碼為基礎(chǔ),直到有一個(gè)可以正常工作的示例為止。通常,我喜歡使用繪圖來渲染圖像,但是由于我們在之后的文章中準(zhǔn)備了一些很酷的東西,因此我們將做一些不同的事情,并且將創(chuàng)建一個(gè)窗口來展示我們的工作結(jié)果。讓我們一起看看代碼吧!import cv2# read the imageimg = cv2.imread("face.jpg")# show the imagecv2.imshow(winname="Face", mat=img)# Wait for a key press to exitcv2.waitKey(delay=0)# Close all windowscv2.destroyAllWindows()很簡單,對吧?我們只是用imread加載圖像,然后告訴OpenCV在winname中顯示圖像,這將打開窗口并給它一個(gè)標(biāo)題。之后,我們需要暫停執(zhí)行,因?yàn)楫?dāng)腳本停止時(shí),窗口會被破壞,所以我們使用cv2.waitKey來保持窗口,直到按下某個(gè)鍵,然后銷毀窗口并退出腳本。如果使用代碼并在代碼目錄中添加了一個(gè)名為face.jpg的圖像,你應(yīng)該得到如下內(nèi)容:原始圖像:

步驟2:人臉識別到目前為止,我們還沒有對圖像做任何處理,只是把它呈現(xiàn)在一個(gè)窗口中,這是非常無聊的,但是現(xiàn)在我們將開始加入其它的內(nèi)容,我們將從識別圖像中選擇一張臉開始。為此,我們將使用名為get_frontial_face_detector()的Dlib函數(shù),非常直觀,但是有一個(gè)警告提示這個(gè)函數(shù)只適用于灰度圖像,所以我們必須首先使用OpenCV。get_frontial_face_detector()會返回一個(gè)檢測器,該檢測器是一個(gè)我們可以用來檢索人臉信息的函數(shù),每個(gè)面都是一個(gè)對象,其中包含可以找到圖像的位置點(diǎn)。但我們最好在代碼上看看:import cv2import dlib# Load the detectordetector = dlib.get_frontal_face_detector()# read the imageimg = cv2.imread("face.jpg")# Convert image into grayscalegray = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2GRAY)# Use detector to find landmarksfaces = detector(gray)for face in faces:    x1 = face.left() # left point    y1 = face.top() # top point    x2 = face.right() # right point    y2 = face.bottom() # bottom point    # Draw a rectangle    cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(0, 255, 0), thickness=4)# show the imagecv2.imshow(winname="Face", mat=img)# Wait for a key press to exitcv2.waitKey(delay=0)# Close all windowscv2.destroyAllWindows()上面的代碼將從圖像中檢索所有面部,并在每個(gè)面部上渲染一個(gè)矩形,從而產(chǎn)生如下圖像:

1  2  3  下一頁>  
聲明: 本文由入駐維科號的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報(bào)。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個(gè)字

您提交的評論過于頻繁,請輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評論

暫無評論

    人工智能 獵頭職位 更多
    掃碼關(guān)注公眾號
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號