訂閱
糾錯(cuò)
加入自媒體

AIGC 施展“物理魔法”,3D視覺(jué)突破“精度極限”

文|姚悅,編|王一粟

“沒(méi)有藝術(shù),全是物理!物理讓你快樂(lè),不是嗎?”

近日,在世界計(jì)算機(jī)圖形會(huì)議 SIGGRAPH 2023 上,英偉達(dá)創(chuàng)始人、CEO 黃仁勛宣布,將生成式AI與仿真模擬平臺(tái)Omniverse結(jié)合的時(shí)候,如同他宣布“AIGC是iPhone時(shí)刻”一樣興奮。

不同于大語(yǔ)言模型只能應(yīng)用在圖文,有了基于物理規(guī)律的仿真模擬平臺(tái),生成式AI就可以直接用到現(xiàn)實(shí)世界。

除了黃仁勛,美國(guó)斯坦福大學(xué)李飛飛團(tuán)隊(duì),近期也將大模型接入機(jī)器人,不僅使得機(jī)器人能夠與環(huán)境有效交互,還能夠在無(wú)需額外數(shù)據(jù)和訓(xùn)練的情況下完成各種任務(wù)。

“基于物理世界模擬的生成式AI,是生成式AI 2.0”,跨維智能創(chuàng)始人、華南理工大學(xué)教授賈奎對(duì)光錐智能表示,與具身智能的結(jié)合,生成式AI 將發(fā)揮出更確定性的作用。

而隨著通用能力的增強(qiáng),AI也有望打破商業(yè)化的“魔咒”。

01 當(dāng)生成式AI學(xué)會(huì)物理

將生成式AI與物理世界結(jié)合,并不容易,這里面涉及的技術(shù)鏈條非常長(zhǎng)。

首先,需要對(duì)物理世界基本規(guī)律的掌握,才能將真實(shí)世界建模到仿真模擬平臺(tái)。

仿真模擬平臺(tái),不僅可以仿真物理場(chǎng)景,還可以模擬真實(shí)世界中物體之間相互作用、運(yùn)動(dòng)和變形。

而生成式AI的加入,會(huì)讓仿真模擬平臺(tái)擁有“預(yù)演”能力。

“人類(lèi)從小就知道的物理常識(shí),AI卻不知道。”黃仁勛表示,“生成式AI和仿真模擬平臺(tái)結(jié)合,就是要讓AI的未來(lái)能夠在物理上扎根。”

黃仁勛進(jìn)一步解釋,讓AI在虛擬世界中學(xué)習(xí)如何感知環(huán)境,并通過(guò)強(qiáng)化學(xué)習(xí)來(lái)理解物理行為的影響和后果,讓AI實(shí)現(xiàn)特定目標(biāo)。

這就需要用生成式 AI,預(yù)測(cè)物理世界中的千萬(wàn)種、甚至上億種可能性,形成有價(jià)值的合成數(shù)據(jù)。

比如機(jī)械臂需要通過(guò)3D視覺(jué)的“眼睛”才能精準(zhǔn)抓取,但如何排除環(huán)境變化的干擾,認(rèn)出待抓取的物體(比如工廠里的零部件)?

通過(guò)仿真模擬平臺(tái)掌握了“光線對(duì)場(chǎng)景目標(biāo)的反射、折射影響”等物理規(guī)律,生成式 AI就能預(yù)測(cè)模擬出一個(gè)瓶子,在不同場(chǎng)景光照下,周身不同的反光程度;同一光照下,金屬、塑料、木制品等不同材質(zhì)物體表面呈現(xiàn)的狀態(tài);一堆釘子,所有可能出現(xiàn)的散落狀態(tài)……

再次,需要將所有數(shù)據(jù),都在仿真模擬平臺(tái)中用AI都跑一遍。

這一步,就是在訓(xùn)練3D視覺(jué)大模型。區(qū)別于大語(yǔ)言模型,3D視覺(jué)大模型對(duì)于理解和推理視覺(jué)場(chǎng)景的組成特性至關(guān)重要,需要處理對(duì)象之間的復(fù)雜關(guān)系、位置、以及現(xiàn)實(shí)環(huán)境中的變化等。

最后,再連接上機(jī)械臂等具身智能的硬件,才能讓其學(xué)會(huì)智能化操作。

可以看到,生成式AI與物理世界結(jié)合的整個(gè)技術(shù)鏈條,不僅涉及物理學(xué)、圖形學(xué)、計(jì)算機(jī)視覺(jué)、機(jī)器人多學(xué)科交叉,還包括數(shù)字孿生、幾何深度學(xué)習(xí)、運(yùn)動(dòng)學(xué)解算、混合智能、智能硬件等多維前沿技術(shù)。

相應(yīng)的,整個(gè)產(chǎn)業(yè)的鏈條也比較復(fù)雜,需要從數(shù)據(jù)到模型,再?gòu)哪P偷讲渴稹?/p>

在這些環(huán)節(jié)中,有一個(gè)節(jié)點(diǎn)和此前AI的路徑非常不同,那就是“合成數(shù)據(jù)生成”。

用基于物理規(guī)律的生成式AI合成的數(shù)據(jù),去訓(xùn)練大模型,將給實(shí)體產(chǎn)業(yè)帶來(lái)跨越式的革命。

02 不用一張真實(shí)圖片,訓(xùn)練3D視覺(jué)大模型

為什么不直接用真實(shí)數(shù)據(jù)訓(xùn)練大模型?

目前,行業(yè)內(nèi)多數(shù)基于3D視覺(jué)的機(jī)械臂,其控制系統(tǒng)的算法訓(xùn)練所使用的就是真實(shí)數(shù)據(jù)。因?yàn)樯虡I(yè)隱私等問(wèn)題,這些真實(shí)數(shù)據(jù)很難在通用數(shù)據(jù)中獲取,基本都是企業(yè)自行采集。

然而,自采真實(shí)數(shù)據(jù),首先在“效率和成本”這兩個(gè)運(yùn)營(yíng)的關(guān)鍵指標(biāo)上,性價(jià)比就非常低。

這是因?yàn),終端應(yīng)用場(chǎng)景碎片化,數(shù)據(jù)根本不能通用。采集真實(shí)數(shù)據(jù),企業(yè)就需要一個(gè)一個(gè)行業(yè),一個(gè)一個(gè)工廠,一個(gè)一個(gè)場(chǎng)景的“地毯式”采集。而且,采集回來(lái)的數(shù)據(jù)也不能直接用,還需要進(jìn)行一系列處理。

這個(gè)過(guò)程中,甚至產(chǎn)生了“人工智能悖論”。

“采集真實(shí)數(shù)據(jù),AI技術(shù)的成本構(gòu)成中,半數(shù)以上都是數(shù)據(jù)成本,而對(duì)數(shù)據(jù)的采集、清洗、標(biāo)注、增強(qiáng)等處理過(guò)程,往往是大量人力堆積的結(jié)果。”有分析人士就曾指出,人工智能的本質(zhì)是代替人工的智能。“諷刺的是,這樣的AI具備顯著的勞動(dòng)密集型產(chǎn)業(yè)特征。”

如果用合成數(shù)據(jù)呢?

“用五六年、上千個(gè)案例積累的真實(shí)數(shù)據(jù),通過(guò)合成數(shù)據(jù),幾天幾周就能完成。”賈奎告訴光錐智能,相比于人工采集與標(biāo)注數(shù)據(jù),合成數(shù)據(jù)的成本能夠?qū)崿F(xiàn)幾個(gè)數(shù)量級(jí)的降低。

最關(guān)鍵的還是,在訓(xùn)練效果上,合成數(shù)據(jù)能夠更優(yōu)于真實(shí)數(shù)據(jù)。

由于本身就是基于物理規(guī)律合成,合成數(shù)據(jù)天生自帶絕對(duì)精確的標(biāo)注,這就意味著,AI學(xué)習(xí)起來(lái)效率非常高。

另外,合成數(shù)據(jù)的“全面性”是真實(shí)數(shù)據(jù)難以比擬的。“生成式AI 2.0可以創(chuàng)造無(wú)數(shù)個(gè)世界,而且可以讓這個(gè)世界快速演進(jìn)。”賈奎表示。

而落地到3D視覺(jué)行業(yè),機(jī)械臂就猶如有了“上帝之手”,可以掌控一切過(guò)去未來(lái)。

“當(dāng)然,這不能是物理世界的規(guī)律之外的。”賈奎強(qiáng)調(diào)。

“目前,我們不使用一張真實(shí)圖片,就可以完成機(jī)械臂復(fù)雜場(chǎng)景作業(yè)的3D視覺(jué)模型訓(xùn)練。”賈奎告訴光錐智能,完全使用合成數(shù)據(jù)訓(xùn)練的模型引導(dǎo)機(jī)械臂的柔性操作,可以實(shí)現(xiàn)現(xiàn)場(chǎng)99.9%以上的穩(wěn)定抓取。

也正是因?yàn)榇耍铣蓴?shù)據(jù),被稱為大模型的“數(shù)據(jù)永動(dòng)機(jī)”。

當(dāng)前,除了3D視覺(jué)領(lǐng)域,許多領(lǐng)域也都因通用數(shù)據(jù)缺乏和噪點(diǎn)多等問(wèn)題,開(kāi)始嘗試使用合成數(shù)據(jù)。但也有對(duì)合成數(shù)據(jù)抱有強(qiáng)烈質(zhì)疑的觀點(diǎn),稱如果沒(méi)有經(jīng)過(guò)精心調(diào)試,在訓(xùn)練時(shí)大量使用,會(huì)引發(fā)模型崩潰,造成不可逆的缺陷。

從技術(shù)演進(jìn)的角度,合成數(shù)據(jù)不會(huì)是大模型的唯一解。

但賈奎指出,“沒(méi)有找到更好的辦法之前,合成數(shù)據(jù)就是目前能夠解決實(shí)際問(wèn)題的最好辦法。如果還采用人力堆砌的真實(shí)數(shù)據(jù),在包括3D視覺(jué)在內(nèi)的很多領(lǐng)域,AGI(通用人工智能)永遠(yuǎn)不可能實(shí)現(xiàn)。”

03 打破AI的商業(yè)化“魔咒”

在機(jī)器視覺(jué)領(lǐng)域,對(duì)合成數(shù)據(jù)的需求更加旺盛,生成式AI 2.0能夠釋放的價(jià)值也就會(huì)更大。

作為機(jī)器視覺(jué)非常重要的感知手段,3D視覺(jué)對(duì)于合成數(shù)據(jù)的需求就十分迫切。

“在一堆相似的零件里‘找不同’,物體換一個(gè)材質(zhì)、顏色,都需要去調(diào)整參數(shù)。”一位3D視覺(jué)從業(yè)人士表示,不同領(lǐng)域的需求不同,使得落地場(chǎng)景過(guò)于碎片化,只能做完一個(gè)項(xiàng)目再重新定制另一個(gè)項(xiàng)目。

這就意味著,企業(yè)很難通過(guò)著力解決一個(gè)或幾個(gè)項(xiàng)目需求,就能形成標(biāo)準(zhǔn)化產(chǎn)品。也就無(wú)法進(jìn)而通過(guò)快速?gòu)?fù)制,打入并拓展市場(chǎng),追求利潤(rùn)規(guī)模。

邊際成本難以降低,會(huì)將一家技術(shù)公司,變成項(xiàng)目公司,最終拖垮。

“魔鬼”藏在細(xì)節(jié)中。

傳統(tǒng)3D視覺(jué)感知有多脆弱?賈奎向光錐智能描述,“機(jī)械臂在抓取過(guò)程中,如果有人路過(guò)產(chǎn)生光線變化,任務(wù)就可能失敗。”

這是由硬件3D相機(jī)的成像原理造成的,3D相機(jī)成像容易受環(huán)境、物體形狀、材質(zhì)、顏色、散射介質(zhì)等影響,而且這一問(wèn)題短時(shí)間內(nèi)難以解決。

“解決一個(gè)問(wèn)題可能是一百步,但最后一步付出的努力可能跟前面99步加起來(lái)是一樣的。”商湯科技聯(lián)合創(chuàng)始人楊帆曾表示,企業(yè)大部分的精力都需要用來(lái)應(yīng)對(duì)小部分長(zhǎng)尾問(wèn)題。

但現(xiàn)在,“通用性能力很強(qiáng)的生成式AI 2.0,能夠解決長(zhǎng)尾問(wèn)題,對(duì)于產(chǎn)品標(biāo)準(zhǔn)化至關(guān)重要。”賈奎表示。

相較于行業(yè)傳統(tǒng)定制化開(kāi)發(fā)的模式,企業(yè)基于生成式AI 2.0,就可以利用通用大模型,實(shí)現(xiàn)產(chǎn)品模塊化開(kāi)發(fā),做到開(kāi)箱即用地部署,進(jìn)而實(shí)現(xiàn)同行業(yè)直接拓展,不同行業(yè)也能有效復(fù)用。3D視覺(jué)行業(yè)的商業(yè)化難題也就迎刃而解。

與此同時(shí),數(shù)據(jù)、開(kāi)發(fā)、部署、硬件、行業(yè)拓展,每一個(gè)環(huán)節(jié)的成本也都實(shí)現(xiàn)驟降。

而在生成式AI 2.0的催化下,3D視覺(jué)一旦爆發(fā),也就意味著,在機(jī)械臂、機(jī)器人、無(wú)人駕駛、元宇宙等等高度依賴3D視覺(jué)技術(shù)的垂直場(chǎng)景,都將加速吃到AI的紅利。

不少數(shù)據(jù)已經(jīng)印證了這一點(diǎn),像數(shù)據(jù)標(biāo)注、合成數(shù)據(jù)、工業(yè)機(jī)器人、機(jī)器視覺(jué)等領(lǐng)域,全球市場(chǎng)規(guī)模都在高速增長(zhǎng),尤其是合成數(shù)據(jù)的年復(fù)合增長(zhǎng)率甚至都超過(guò)了30%。

這背后,實(shí)際上是生成式AI 2.0的戰(zhàn)略價(jià)值,已經(jīng)受到了科技和眾多制造業(yè)巨頭的高度重視。

從西門(mén)子、福特等老牌制造企業(yè),到英偉達(dá)、特斯拉、谷歌等一眾科技巨頭,再到Waabi等明星初創(chuàng)公司,都開(kāi)始紛紛在工業(yè)、機(jī)器人、無(wú)人駕駛、醫(yī)療、零售等諸多領(lǐng)域,探索生成式AI 2.0更大的可能。

與此同時(shí),資本的熱情也被極大地調(diào)動(dòng)起來(lái)。據(jù)不完全統(tǒng)計(jì),近年來(lái),國(guó)外合成數(shù)據(jù)的相關(guān)融資,累計(jì)已接近8億美元。

在國(guó)內(nèi),合成數(shù)據(jù)相關(guān)企業(yè)也同樣引起了資本的注意。2022年6月,跨維智能宣布完成Pre-A輪融資,融資金額數(shù)千萬(wàn)元,成立不到一年時(shí)間累計(jì)融資近億元;今年7月,光輪智能也宣布完成天使+輪融資,融資金額累計(jì)數(shù)千萬(wàn)元。

可以說(shuō),從會(huì)作詩(shī)到學(xué)物理,生成式AI 2.0正在開(kāi)啟一個(gè)產(chǎn)業(yè)數(shù)字化的宏大未來(lái)。

歡迎關(guān)注光錐智能,獲取更多科技前沿知識(shí)!

       原文標(biāo)題 : AIGC 施展“物理魔法”,3D視覺(jué)突破“精度極限”

聲明: 本文由入駐維科號(hào)的作者撰寫(xiě),觀點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問(wèn)題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過(guò)于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無(wú)評(píng)論

暫無(wú)評(píng)論

    人工智能 獵頭職位 更多
    掃碼關(guān)注公眾號(hào)
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號(hào)